


Welcome to Delegates

Restriction of Hazardous Substances (RoHS) Key Features, Identification and Testing Methods and its Applicability in Indian Legislation

> February 06, *2017 At* CII–Sohrabji Godrej Green Business Centre (CII-Godrej GBC)

Centre for Materials for Electronics Technology (C-MET) Min. of Electronics and Information Technology (Meity), Govt. of India IDA Phase - III, Cherlapally, Hyderabad - 51

> Dr. U. Rambabu M. Phil.; Ph. D Senior Scientist & Quality Manager

C-MET

✓Ultra high purification of Metals

- High Purity Metals: Ga, In, Cd, Te, Zn for III-V compound semiconductors
- Refractory Metals: Ta, Nb, Hf
- World Class RoHS testing facility

✓ Processing Thick Film Materials

- Electronic Packaging
- Sensors
- Opto-Electronic Materials
- Advanced Nanomaterials

✓ High Tech Ceramic Processing

- Multilayer Ceramic Packaging
- Multilayer Actuators
- Nanomaterials

HYDERABAD

PUNE

Out line

Legislative background **What is it about** Restricted elements and compounds Toxicity of hazardous substances DExemptions Characterization of RoHS elements Case studies at C-MET, Hyderabad **U**Summary

RoHS

- Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS)
- Directive (2002/95/EC)
- As of July 1, 2006, this directive bans lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) from all new electrical and electronic equipment sold to EU companies and manufactured in the EU.

Computer Hardware is Subject to RoHS Directive Automotive Hardware is Subject to ELV Directive

Why Important ?

Sost

- Dutch Government blocked the shipment of 1.3M Sony Playstation system, 800K accessories - combined value of over US \$200M in 2001.
- ✤ Cadmium in cables exceeds 0.01% limit by 3 20x.

Health Fears

- Media reported that over 100 workers in two Chinese battery factories (Huizhou, Southern China) were suspected to be contaminated by cadmium in July 2004.
- Medical report states " excessive levels of cadmium in blood".

What is the meaning of **HS**?

 EU Directive 2002/95/EC of the European Parliament and of the council on the Restriction of the use of certain Hazardous Substances (RoHS) in electrical and electronic equipment

2

2

What is it about it

- Approximate the laws of the Member States
- Contribute to the protection of human health
- Environmental
- Disposal of waste electrical and electronic equipment

Rationale for RoHS Directive

Restricted substances & their permissible limit

Hexavalent Chromium 1000 ppm

PBDE 1000 ppm

> Cadmium 100 ppm

Lead 1000 ppm

Mercury 1000 ppm

Categories of Electrical and Electronic Equipment (EEE) Covered by EU WEEE & RoHS

Large Household Appliances

Small Household Appliances

IT and Telecommunications Equipment

Lighting Equipment

Electrical and Electronic Tools (with the exception of large-scale stationary industrial tools)

Toys, Leisure and Sports Equipment

Medical Devices (with the exception of all implanted and infected products not covered by RoHS)

Monitoring & Control Instruments (Not covered by RoHS)

Automatic Dispensers

What is included: in general

- Applies to any product which is dependent on electric current or electromagnetic fields. Also, Includes all non-electronic parts of the product.
- Voltage rating of the product is less than 1000 V AC or 1500 V DC

SCOPE OF ROHS DIRECTIVE


What is NOT included:

- Spare parts for the repair, or the reuse, of electrical & electronic equipment put on market prior to July 1, 2006
 - Military Equipment
 - Medical Equipment

Measurement and Control Equipment

Large scale stationary industrial tools

Summary on related directives

Directive Ref.	Date	Objective	Remarks
2002/95/EC	27Jan03	Restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) and to contribute to the protection of human health and the environmentally sound recovery and disposal of waste EEE.	 6 banned materials included Pb, Hg, Cr6+, Cd and PBB / PBDE. Related consultation paper was issued to interested parties for review on 30/7/04. <i>Max. conc. value - 0.1%</i> by weight in homogeneous material for <i>Pb</i>, <i>Hg</i>, <i>Cr6+</i>, <i>PBB</i>/<i>PBDE</i> <i>Max. conc. value - 0.01%</i> weight in homogenous material for <i>Cd</i>.
2000/53/EC	18Sept00	Measures at the prevention of waste from vehicles and at the re-use, recycling and other forms of recovery of end-of life vehicles (ELV) and their components.	 Related consultation papers issued on March 2003 and February 2004, confirm the maximum concentration value limit to :- 0.1% by weight per homogeneous material for <i>Pb</i>, <i>Cr6+ and Hg</i>. 0.01% for <i>Cd</i>, which are not intentionally
94/62/EC 2004/12/EC (amendment)	20Dec94 2Nov04	Amending directive 94/62/EC, on Packaging and Packaging Waste is to prevent packaging waste by encouraging packaging re-use and recycling while at the same time avoid distortions in the internal market.	 The targets defined are the following: <i>Recovery of minimum 60%</i> by weight of the packaging waste <i>Recycling of at least 55%</i> and a maximum 80% by weight of the totally of packaging materials, with a material-specific minimum recycling rate for plastic of 22.5% Max. sum of concentration levels of <i>Pb, Cd, Hg and Cr6+ -> 100 ppm</i> by weight

Summary on related directives

Directive Ref.	Date	Objective	Remarks
91/338/EEC	18Jun91	Restriction on the use of Cadmium pigment (amending for the 10th time Directive 76/769/EEC)	The cadmium content (expressed as Cd metal) exceeds 0,01 % by mass is prohibited in the finished products or components of products manufactured from polymers or copolymers of vinyl chloride and stabilized by substances.
91/157/EEC 98/101/EC (amendment)	3Mar91 22Dec98	The recovery and controlled disposal of those spent batteries and accumulators containing dangerous substances.	 Batteries and accumulators are prohibited with content: More than 25mg of mercury per cell, except alkaline manganese batteries, More than 0.025% of cadmium by weight, More than 0.4% of lead by weight, Alkaline manganese batteries containing more than 0.025% of mercury by weight
76/769/EEC	27Jul76	Approximation of the laws, regulations and administrative provisions of the Member states relating to restrictions on the marketing and use of certain dangerous substance and preparations	

Offences and Penalties

<u>Penalties</u>

<u>UK</u>

Failing to comply the RoHS could result: Summary Conviction : Max. £5,000 Indictment Conviction : Unlimited Fine

director, manager or similar officer of the corporate body, they could be regarded as having committed the offence as well as the corporate body

Defence:

'due diligence' is available where a person can show he took all reasonable steps and exercised all due diligence to avoid committing an offence.

(include reference to an act or default or information given by a third party or that information in possession of the person making the claim)

Loss in Failing Compliance

Other invisible penalty

- Lost market competitiveness and business chance
- Product cannot sell in Europe, US and China markets.
- Reputation Damage

RoHS Documents

On request to provide technical documentation or other information to enforcement authority

- Record should be kept at least 4 years
- Self-declaration

China RoHS Regulation

- China RoHS will apply to electronics manufactured in China for sale domestically as well as goods imported into China.
- It does not apply to electronics made in China for export and it does not apply to military electronics.
- Electronic products shall indicate the names and contents of toxic and harmful substances contained therein and the recyclability of such products.
- From January 2007, products shall not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE) and other toxic and harmful substances.
- Packaging-material use-and-declaration requirement stating that "nontoxic, harmless, readily degradable and recyclable materials shall be used as the packaging materials, and the materials ingredients of the packaging shall be clearly marked".

Which materials are banned ? (Directive 2002/95/EC)

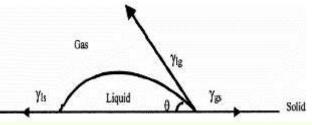
• Lead (Pb)

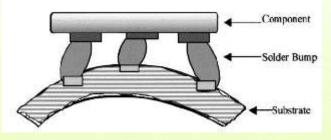
- Used in virtually all solders and electronic components.
- Cadmium (Cd)
 - Used in batteries (NiCd), plastic stabilizers, platings.
- Mercury (Hg)
 - -Used in some electrical components, batteries, pigments.
- Hexavalent chromium (Cr⁶⁺)
 - Used in dyes, pigments, plating solutions, alloys.
- Polybrominated biphenyls (PBB) & Polybrominated diphenyl ethers (PBDE)
 - Both PBB and PBDE are used as flame retardants in plastics

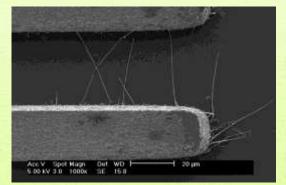
Exceptions to RoHS (All exceptions will be reviewed every 4 years or less)

1. Lead:

- in the glass of cathode ray tubes
- in certain steel (<0.35%), aluminum (<0.4%) and copper alloys (<4%)
- in high melting temperature type solders
- in solders for servers and Storage Arrays (Until 2010)
- Lead in solders for network infrastructure equipment in electronic ceramic parts (i.e. piezoelectric components)
- 2. Mercury: in some lighting applications
- 3. Cadmium: Cd plating
- 4. Hexavalent chromium in refrigerators
- 5. Further exceptions are still under discussion.




Issues in using Pb-free solders



>Replacement of lead in solders \rightarrow costly material to replace, difficult to process, less reliability data

- Lower solderability
 - Higher surface tenson → cannot spread easily
- Higher reflow profile
 - Increase board warpage.
- Tin Whisker
 - An elongated single crystal of pure tin
 - Potential failure risk by short circuits

WEEE and RoHS

Waste Electrical and Electronic Equipment WEEE as set out in Directive 2002/96/EC of 27 January 2003

Reduce the load of electronic waste: heavy metals flame retardants

Exemptions

Exemptions from the substitution requirement should be permitted if substitution is not possible from the scientific and technical point of view.

or if the negative environmental or health impacts caused by substitution are likely to outweigh the human and environmental benefits of the substitution

Exemptions for Hg

Mercury in compact fluorescent lamps not exceeding 5 mg per lamp.

- Mercury in straight fluorescent lamps for general purposes not exceeding:
 - halophosphate 10 mg
 - triphosphate with normal lifetime 5 mg
 - triphosphate with long lifetime 8 mg
- Mercury in straight fluorescent lamps for special purposes.

- Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.
- Lead as an alloying element in steel containing up to 0.35 % lead by weight, aluminium containing up to 0.4 % lead by weight and as a copper alloy containing up to 4 % lead by weight.
- Lead in high melting temperature type solders (i.e. tin-lead solder alloys containing more than 85 % lead).

RoHS like regulations

Country	Entry date for into force	Restricted substances	Product Scope
EU (incl. N, S)	1.7.2006	Hg, Cd, Pb, CrVI, PBB, PBDE	defined product categories
USA/California	1.1.2007	Hg, Cd, Pb, CrVI	only for larger displays , extension of the scope (beginning 2010) fallen through
China	1.3.2007	like EU RoHS	EIPs (substance bans only for selected EIPs)
South Korea	1.7.2008	like EU RoHS	all electronic products, automotive electronics
USA/New Jersey	1.2.2009	like EU RoHS+PVC	only for larger displays and computers

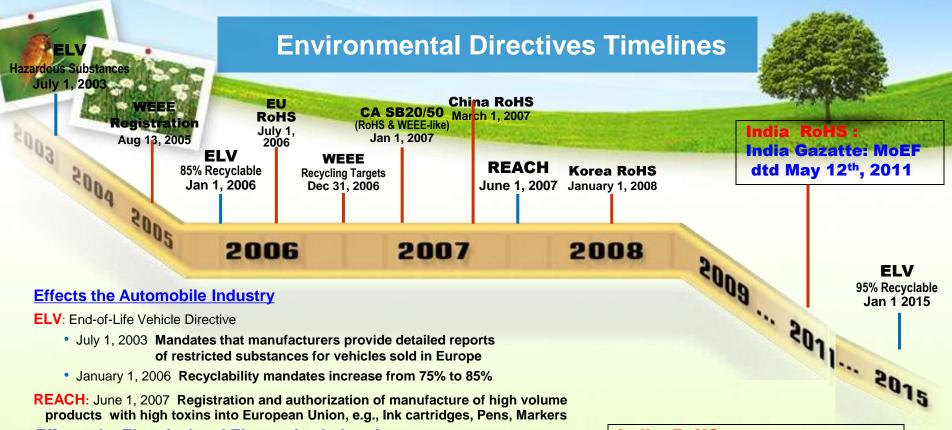
Hazardous practices of recovery of metals in un-organized sector

Total Au-recovery efficiency only ≈ 25%, while environmental & health damage is dramatic (Rochat, Keller, EMPA 2007)

Glance of E-Waste & Recovery Practices in India

→ Producer

 Produces are required to keep appropriate records for a period up to 4 years after the use.


Who is a producer ?

Any person / company who irrespective of selling technique used,

• Manufactures & sellers of EEE under his own brand

and der elle the most

- Resales under their own brand, equipment produced by other suppliers
- Imports or exports of electrical & electronic equipment on a professional basis into member states.

Effects the Automobile Industry

ELV: End-of-Life Vehicle Directive

- July 1, 2003 Mandates that manufacturers provide detailed reports of restricted substances for vehicles sold in Europe
- January 1, 2006 Recyclability mandates increase from 75% to 85%

REACH: June 1, 2007 Registration and authorization of manufacture of high volume products with high toxins into European Union, e.g., Ink cartridges, Pens, Markers

Effects the Electrical and Electronics Industries

WEEE: Waste Electrical and Electronic Equipment Directive

- Aug 13, 2005 Establishes producer responsibility for recycling and disposal of electrical goods
- Dec 31, 2006 EU country-specific recycling targets must be achieved

EU RoHS: Restriction of Hazardous Substances Directive

 July 1, 2006 No lead (lead-based solder), cadmium, mercury, hexavalent chromium and PBB/PBDE flame retardants

California SB20/50: Restriction of Hazardous Substances Directive

January 1, 2007 Limited product scope, LCD, Printers

China and Korea RoHS: Restriction of Hazardous Substances Directive

 March 2007 and January 1, 2008 respectively: Labeling; No lead (lead-based) solder), cadmium, mercury, hexavalent chromium, PBB/PBDE flame retardants India RoHS: India Gazatte: MoEF Notification dtd May 12th, 2011

(Chapter V: Reduction in the use of Hazardous substances in the electrical and electronics equipmant)

[PUBLISHED IN THE GAZETTE OF INDIA, EXTRAORDINARY PART-II, SECTION-3, SUB-SECTION (i)]

GOVERNMENT OF INDIA MINISTRY OF ENVIRONMENT, FOREST AND CLIMATE CHANGE

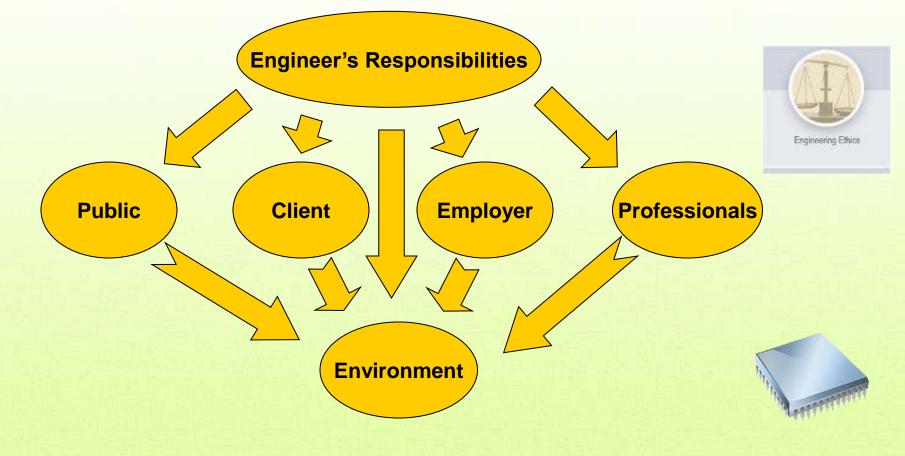
NOTIFICATION

New Delhi, the 23rd March , 2016

1. Short title and commencement. - (1) These rules may be called the E-Waste (Management) Rules, 2016.

(2) They shall come into force from the 1st day of October, 2016.

CHAPTER V


REDUCTION IN THE USE OF HAZARDOUS SUBSTANCES IN THE MANUFACTURE OF ELECTRICAL AND ELECTRONIC EQUIPMENT AND THEIR COMPONENTS OR CONSUMABLES OR PARTS OR SPARES

16. Reduction in the use of hazardous substances in the manufacture of electrical and electronic equipment and their components or consumables or parts or spares. – (1) Every producer of electrical and electronic equipment and their components or consumables or parts or spares listed in Schedule I shall ensure that, new Electrical and Electronic Equipment and their components or consumables or parts or spares do not contain Lead, Mercury, Cadmium, Hexavalent Chromium, polybrominated biphenyls and polybrominated diphenyl ethers beyond a maximum concentration value of 0.1% by weight in homogenous materials for lead, mercury, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers and of 0.01% by weight in homogenous materials for lead, mercury, hexavalent chromium, polybrominated biphenyls and polybrominated diphenyl ethers and of 0.01% by weight in homogenous materials for cadmium.

- (2) Components or consumables or parts or spares required for the electrical and electronic equipment placed in the market prior to 1st May, 2014 may be exempted from the provisions of sub-rule (1) of rule 16 provided Reduction of Hazardous Substances compliant parts and spares are not available.
- (3) The applications listed in Schedule II shall be exempted from provisions of subrule (1) of rule 16.

Application of moral principles and professional standards to situations encountered by professionals in the practice of manufacturing of EEE products.

The toxicity of hazardous substances

Where can we find the banned substances? Cr ⁶⁺

Hexavalent Chromium (Cr⁶⁺)

Cr⁶⁺ is generally produced by industrial processes, and used in industries such as :-

- Pigments, catalysis, plating and tanning
- Parts with a metal frame
 (e.g. Motor, Transformers, etc.)

• Screws, nuts, some parts / areas that are chromate treated (e.g. AC adaptor, variable resistor, driver unit, etc.)

Kalifier (

Chromium Exists as Several Chemical Species

- Most common oxidation states: 0, +3, +6
 - 0: Elemental Chromium (Cr) +3: Trivalent Chromium,Species: Cr³⁺, Cr₂O₃ +6: Hexavalent Chromium, Species: Cr⁶⁺, CrO₄²⁻, Cr₂O₇⁻
- Cr(VI) is much more toxic, stable and mobile than Cr(III)
- Cr(VI) is a known human carcinogen, Cr(VI) is also a respiratory tract irritant.
- Hexavalent chromium (Cr⁶⁺) exists in alkaline, strongly oxidizing environments
- Trivalent chromium (Cr³⁺) exists in moderately oxidizing and reduced environments

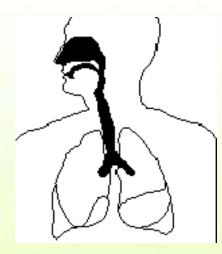
Is Chrome a Carcinogen or Necessary Element?

Chrome III is an essential nutrient for maintaining blood glucose levels

Chrome VI is classified as a known human carcinogen

Used as a surface finish because of:

- low coefficient of friction
- High hardness, excellent corrosion resistance, high heat resistance
- Anti-galling properties (sliding on the surface without pressure)



- Inhalation of dusts, mists, or fumes created during processes involving the use of Cr(VI) compounds or hot processes that cause the formation of Cr(VI)
- Eye or skin contact with powder, dusts or liquids containing Cr(VI) with skin absorption possible
- Ingestion through contamination of food and drink.

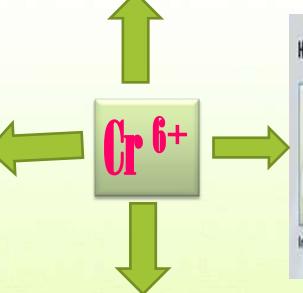
Major Health Effects

Lung cancer Nasal septum ulcerations and perforations Asthma Skin ulcers Allergic and irritant contact dermatitis

The differences between Cr³⁺ and Cr⁶⁺ in terms of plating

The major disadvantage of the current process of chrome plating is that it requires the use of chromic acid-based electrolytes comprising Cr⁶⁺.

Consideration	Cr ³⁺	Cr ⁶⁺
Ease of burning	Very hard	Easy
Ease of rinsing	Easy	Not easy
Skin contact	Mild effect, similar to nickel	Strong acid burn and ulceration
Waste treatment	Easy	Not easy
Mistiness	Similar to nickel	Heavy and toxic
Color of deposit	Metallic white to pewter	Blue-white, "chrome" color



Hexavalent Chromium (Chromium 6) Primary Route of Entry

Inhalation

Skin Absorption

Ingestion

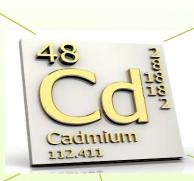
Can Cr⁶⁺ be replaced in plating process ?

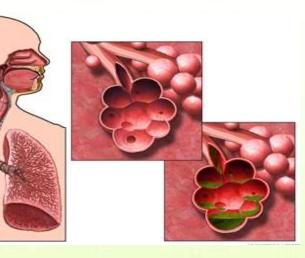
- using trivalent chromium plating baths (but with inferior performance and poorer corrosion resistance)
- Nickel or Nickel and cobalt alloys
- Other techniques used for plating such as:
 - Electroless plating
 - Nickel \rightarrow replacement for chromium
 - metal ions in a dilute aqueous solution are deposited onto a substrate by means of a continuous chemical reaction.
 - Chemical vapor Deposition (CVD), surface hardening, thermal spraying, physical vapor deposition, etc.
 - Organic Polymer Films
 - Such as polyacrylate, polyethylene waxes, etc.

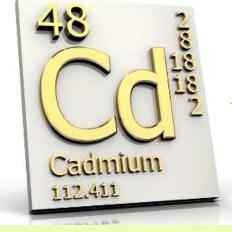
Cadmium (Cd)

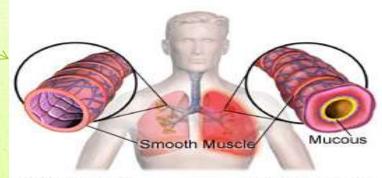
- a natural-occurring element in the earth's crust often found in combination with other elements, e.g oxygen (cadmium oxide, CdO), chlorine (cadmium chloride, $CdCl_2$), or sulfur (cadmium sulfide, CdS)
- not corrode easily, when used as a sacrificial coating (dual qualities of lubricating at minimal thickness and superior sacrificial corrosion protector).
- used in products such as rechargeable batteries (NiCd), plastic stabilizers, electroplating coatings, metal coating, pigments, electrical contact alloys for relays and switch, etc.

Cadmium (Cd) -Human health issues


- CdO is a cancer-causing agent– especially prostate and kidney cancer in humans (*carcinogen*).
- CdO fumes:
 - toxic to the respiratory system (destroy epithelium layer)
 - high exposure results in severe bronchial and pulmonary irritation.
 - also hamper the development and function of immune system, reproductive organs and nervous system







Normal Lung and Airway Inflamed Lung and Airway

Any alternative material to replace Cd in electroplating ?

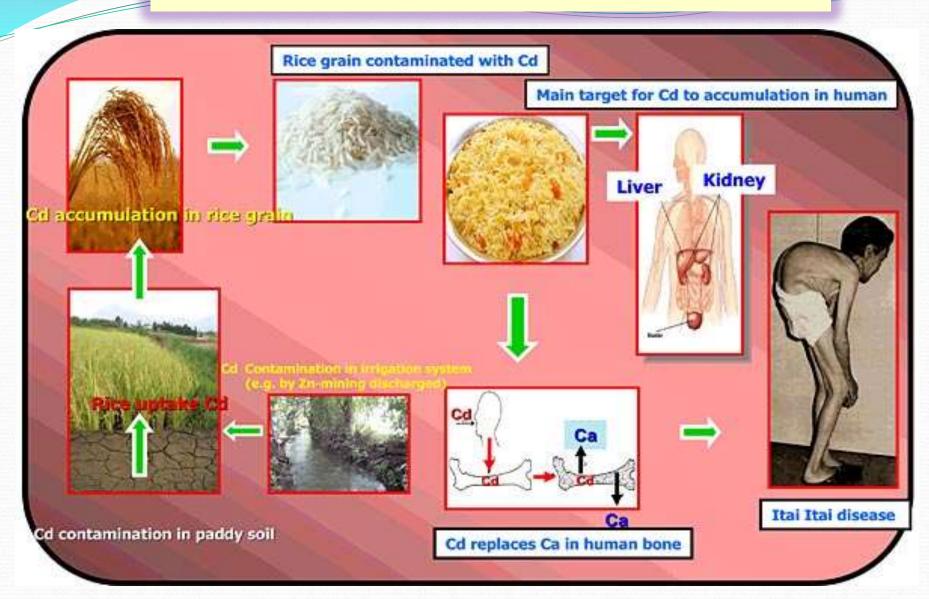
Aluminum Ion Vapour Deposition System (AIVD)

- used in place of cadmium in the electroplating industry.
- advantages include:
 - no hazardous materials (HM) required and generated
 - prevents employee exposure to HM
 - eliminates the need for environmental permits
 - prevents corrosion better than Cd coatings in acidic environments
 - the coatings stand up to higher temperatures than Cd
 - allows for thicker coatings and a more uniform coating

Any alternative material to replace Cd ?

Zinc-based replacement in electroplating industry such as:

Zinc-Nickel alkaline plating bath:


- good corrosion resistance properties
- uniform thickness during coating process
- better wear resistance but lack of lubrication

Zinc-Cobalt acidic plating bath:

- its plating bath has higher cathode efficiency
- higher plating speed
- but variable current density

Possible Cd intake to Human body

CENTRE FOR MATERIALS FOR ELECTRONICS TECHNOLOGY (C-MET)

Where can we find the banned substance? Hg

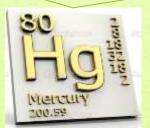
- Mercury : metal in liquid form in room temperature. Do not oxidize at room temperature.
- Very small amount of Hg can do a significant damage to the environment. For example, 1gm of Hg per year is enough to contaminate all the fish in lake with a surface area of 8 hectares.
- Metallic mercury use in producing chlorine gas and caustic soda and commonly apply to use in thermometer, dental fillings, batteries.
- In electronics industry → thermal indicators, relays, sensors, fluorescent lamp, switches, sensors, etc.

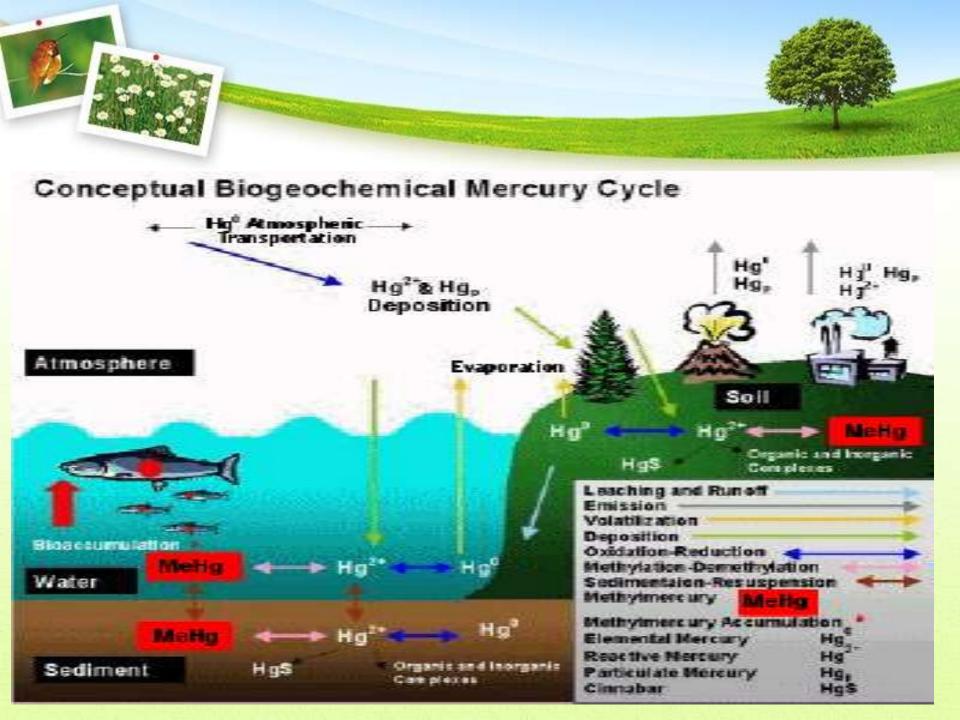
Quantitative Exemptions of Hg

As per the Directive exemptions :

- Mercury in compact fluorescent lamps $\leq 5mg$ per lamp.
- Mercury in straight fluorescent lamps purpose not exceeding :
 - halophosphate 10mg
 - triphosphate with normal lifetime 5mg
 - triphosphate with long lifetime 8mg
- Mercury in straight fluorescent lamps for special purposes

The amount of mercury used in the fluorescent lamps may affect the lifetime of the product i.e. % of weight of Hg decrease \rightarrow the lifetime of the product may also decrease.




 \geq

Any alternative of Hg?

- No viable replacements for Hg-fluorescent lamp yet.
- Sodium vapor lamps:
 - Ne and Ag gas + Na Vapor. Na vapor emits yellow light make all the objects more or less yellow.
- Sulfur lamps:
 - Matching the sun light but again harmful because of S.
- For some mercury wetted relays, may prefer to use gold plated or silver plated (AgNi/AgSnO) contacts as alternative.

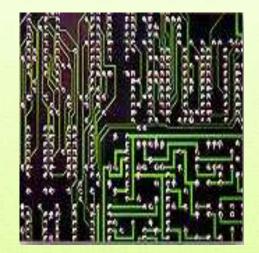
-

This Area Contains A Chemical Known To The State Of California To Cause Birth Defects Or Other Reproductive Harm.

HAZARDOUS AREA

THE FISH, FROGS AND SOILS IN THIS AREA CONTAIN MERCURY AND OTHER TOXIC CHEMICALS

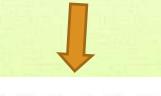
DO NOT EAT THE FISH



Where can we find the banned substance? Pb

Pb-Sn Alloy

- most commonly used in solders;
- Terminations, PCB coatings, component lead finishes, & cable (PVC).


Pb - Based Components

Pb - free coating

Component lead coating:

- Electroplated tin,
- Electroless Nickel/Immersion Gold,
- Immersion Silver,
- Electrolytic Gold,
- Palladium/nickel used on some semiconductor lead frames, good wetting properties but higher price

Surface finish on the solder bond pad of PCB/BGA substrate:

- Organic Solderability Preservatives (OSP)
 - -lower cost
 - thin coating, thus easily damaged
- Nickel/gold
 - good alternative
 - -expensive

- Lead-free solders have a higher melting point requiring higher process temperatures
- Lead-free solders are significantly harder, which can increase the likelihood of cracks instead of plastic deformation, which is typical for leadcontaining solders
- Energy consumption
- Costs to upgrade to technology standard

Where can we find the banned substances ?

Polybrominated Biphenyls (PBBs) and Polybrominated Diphenyl Ethers (PBDEs)

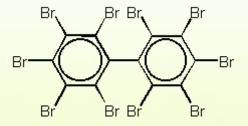
Commonly used in flame retardants (FR) in a variety of plastics \rightarrow to meet stringent global fire safety standards (e.g. UL94 – V0)

- TV / Display Cabinets
- PCB epoxy resin
- Wire / cable insulation and connectors

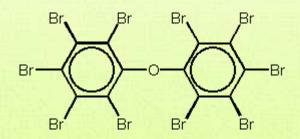
Mostly with Polystyrene, Terephthalates, Polyamides, Polycarbonates, Polypropylene.

Background information

- Brominated flame retardant (BFR) has been the largest market group because of
 - low cost
 - high performance efficiency

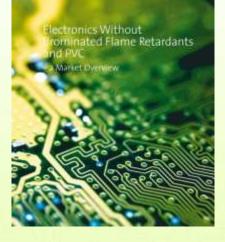


• It will react and form polybrominated dibenzo-p-dioxins (PBDD) and polybrominated dibenzofurans (PBDF) after its reaction to put down fire. Both are carcinogenic elements



Background information about the PBB and PBDE

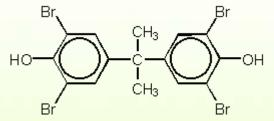
Chemical structure of the monomer: Deca-bromo-biphenyl is a monomer of PBB


Deca-bromo-diphenyl-ether is a monomer of PBDE

PBB, PBDE used Components

Para and

Occurrence of PBB and PBDE



Alternatives for PBB & PBDE

- Tetra-bromobisphenol A (TBBPA)
 - commonly used both as a reactive flame retardant or as an additive flame retardant in PWB.
- Non-halogenated flame retardants

- Al(OH)₃ and other hydroxides: Currently the most widely used flame retardant.

Al(OH)₃ \rightarrow Al₂O₃ + H₂O; decompose at 200°C Mg(OH)₃ \rightarrow Mg₂O₃ + H₂O; decompose at 300°C

water vapor cool the substrate during heating and also dilute the gas phases

- Zinc Borate (ZnBO₃):
 - act by endothermic reactions and by the formation of a glassy coating protecting the substrate.
- Antimony Oxide (Sb₂O₃):
 - Works together with a halogen-containing compound
- Common disadvantages:
 - Difficult to incorporate
 - Require high loading to be effective

□ No exact or drop-in replacement !

Several alternative materials have been recommended for each of the banned materials

□ There is not yet much field data available for the new materials!!

□ Most of the cases, the alternative materials are costly and inferior in performance

□ More R & D is needed in near future

NABL Accreditation to CMET

NABL National Accreditation Board for Testing and Calibration Laboratories Department of Science & Technology, India

CERTIFICATE OF ACCREDITATION

CENTRE FOR MATERIALS FOR ELECTRONICS TECHNOLOGY (C-MET), ANALYTICAL DIVISION

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at IDA Phase-III, Cherlapally, HCL (Post), Hyderbad

in the discipline of

CHEMICAL TESTING

Certificate Number T-1780 Issue Date 28/06/2012

(To see the scope of and

Valid Until 27/06/2014

the array calls in the only

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the additional requirements of NABL.

Signed for and on behalf of NABL

Anuja Anand Convenor

Andals Anil Relia

Director

11 annon Dr T. Ramasami Chairman

रा.प्र.प्र.बो. राष्ट्रीय परीक्षण और अंश्शोधन प्रयोगशाला प्रत्यायन वोर्ड विज्ञान एवं प्रौद्योगिकी विभाग,भारत पत्यायन प्रमाण-पत्र इलक्ट्रॉनिक्स टेक्नोलॉजी (सी-मेट), एनालिटिकल डिविजन फार सन्टर फार माटारयल्स का मुल्यांकन और पुत्यायन निम्न मानक के अनुसार आई.एस.ओ./आई.ई.सी. 17025:2005 "फीडण एवं अंग्रजीधन प्रयोगजालाओं की मस्मता की मामान्य अपेकाएँ हेटराबाद में स्थित इसकी संविधाओं के लिए रासायनिक परीक्षण के विषय क्षेत्र में किया गया। If these we was it if you about the 9-1780 प्रमाण-पत्र संसध्य जारी करने की लिपि 28/06/2012 वयना की लि 27/06/2014 यह प्रमाण-पत्र उपर्युक्त मानक तथा राष्ट्रीय परीक्षण और अंग्रपोधन प्रयोगशाला प्रत्यायन बोर्ड की अतिरिक्त अपेक्षाओ का निरंतर मंतीपप्रद अनुपालन किए जाने पर अनुबंध में निर्दिष्टानुसार प्रत्यायन के क्षेत्र के लिए वैध रहेगा। रा.प.प.वो. की ओर से हस्ताक्षरित 2 Arthan Claim Him अगिल रेलिया डा टी. रामसामा अनजा आनद निदेजव

RoHS testing procedures

IEC 62321 technical procedures for the Determination of Levels of Regulated Substances in Electrotechnical Products

Homogeneous material definition – analysis of coatings

Cr6

Zinc

Steel

 Definition of homogeneous materials explains concentration limit

It is NOT an analysis instruction

Removal of Cr6 coating by abrasion is possible so this is a homogeneous material

But - very difficult to remove enough material for analysis

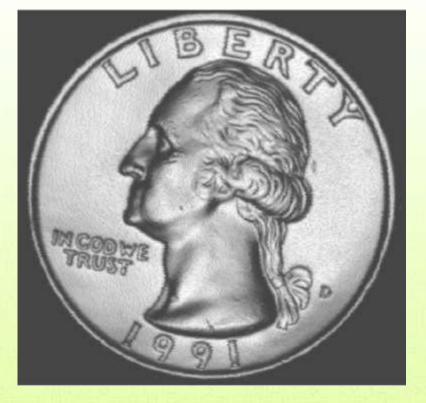
However - it is possible to analyse coating in-situ by chemical extraction method

Testing methods

Screening: XRF (X-ray Fluorescence)

Non destructive
Fast
Needs reference material
Calibration

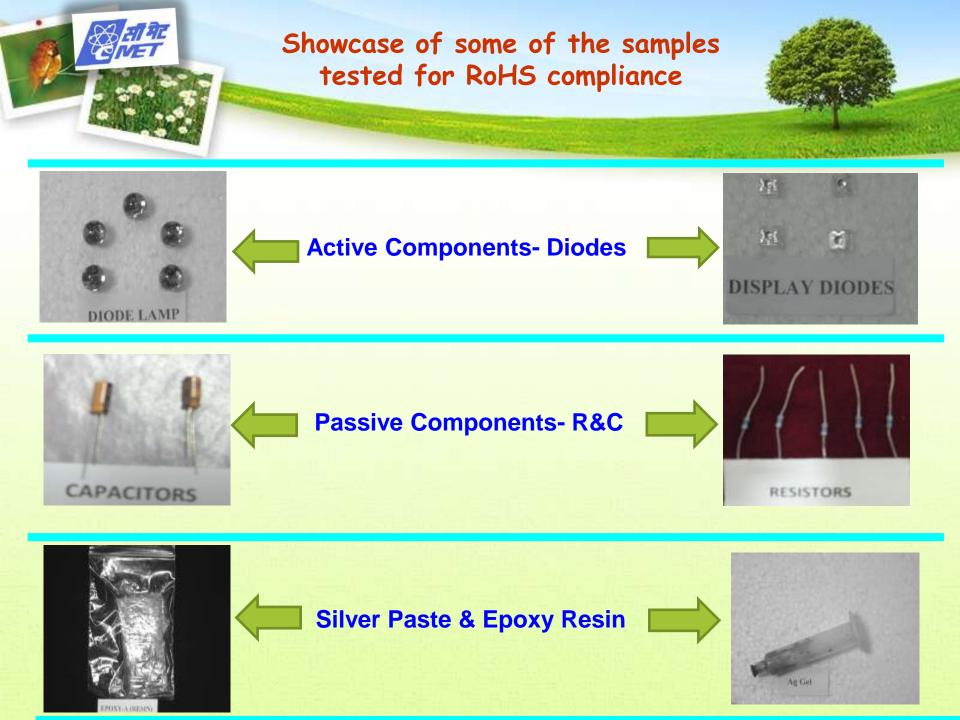
Testing methods

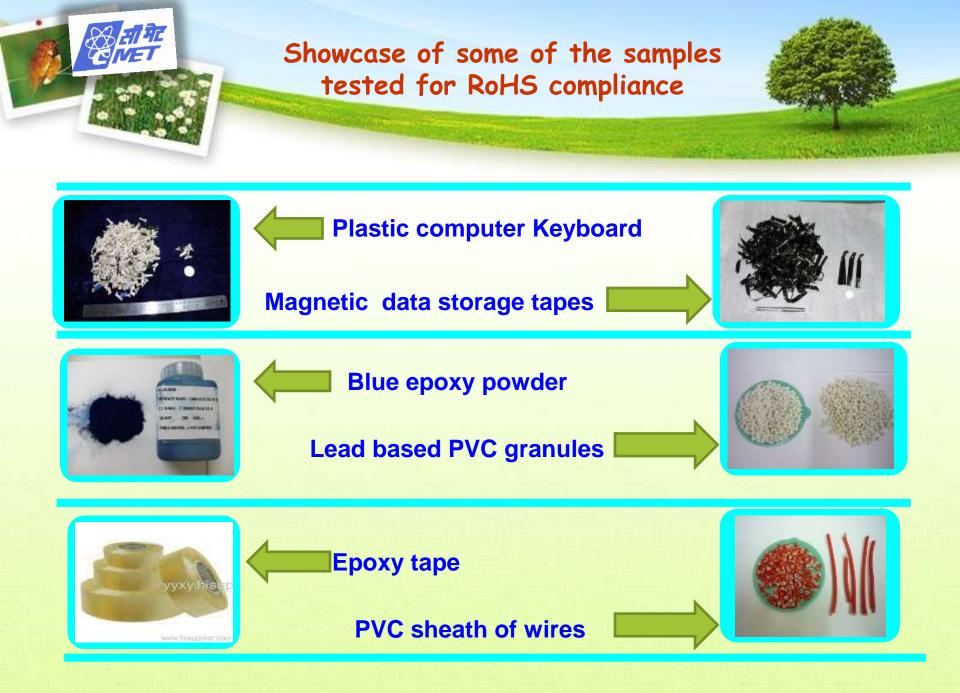

Wet chemistry

ICP-MS (Inductively Coupled Plasma Mass Spectrometry) ICP-OES (Inductively Coupled Plasma-Optical Emission Spectroscopy) CV-AAS (Cold Vapor Atomic Absorption Spectrometry) AAS (Atomic Absorption Spectrometry)

- Destructive, digestion
- Time vs precision
- Calibration

Non-destructive and Destructive





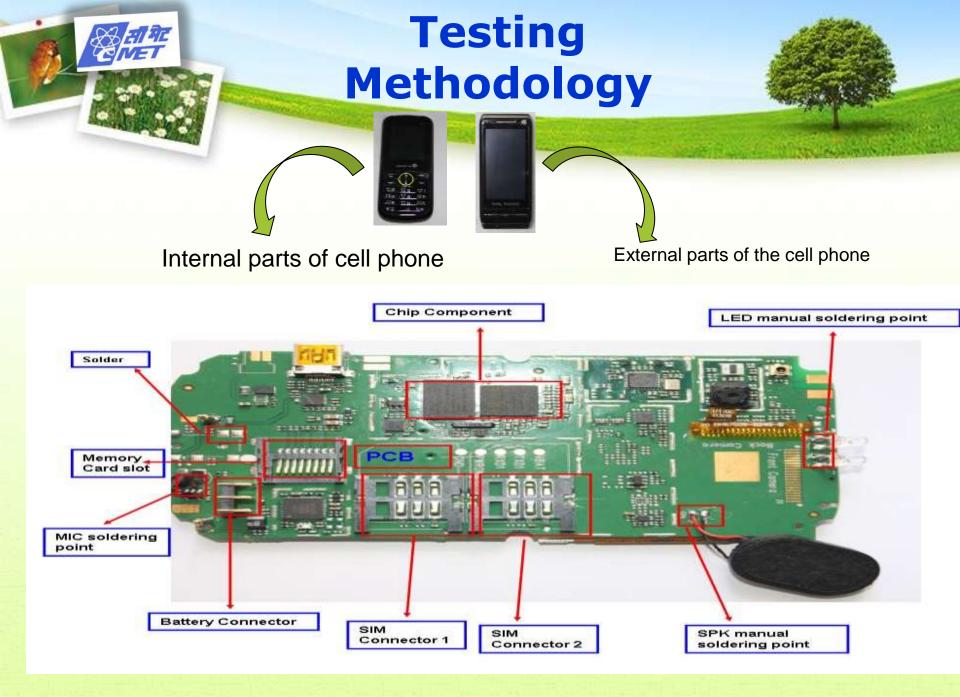
Energy Dispersive X-Ray Fluorescence Spectrometer (ED-XRF)

Counterfeit phones RoHS compliance testing (C-MET Study)

Do Non-RoHS Complaint Phones Potentially Pose a Health or Create Environmental Hazards?

EXAMPLE OF TOXICITY FROM MOBILE PHONES

 There are about 900 million mobiles in India and are growing @10% per annum.
 There are 90 million mobiles (~10% of 900 million) gets outdated every six months


Average mobile phone weight is 150 g
 Nearly 15g of toxic elements like Cd, Pb, Cr⁺⁶, PBB and PBDE.
 Therefore, 15 x 90 x 10⁶ gms = 1350 tones of toxicity is generated every six

months.

Ν	Aobile Name		XXXX					
S. No.	Position		Concentration (All in ppm)					
		Cd	Hg	Pb	Br	Cr		
1	Back Cover	0	0	0	32.7	26		
2	Key Pad	0	0	0	0	48		
3	SIM 1	0	0	400.9	3031	0		
4	SIM 2	0	0	2566	2031.3	1148		
5	Memory Card	95	0	28240	0	0		
	Slot							
6	PCB	0	0	493	648	0		
7	Chip Component	0	0	17824	3664	0		
8	Battery	42	0	4578	2456	0		
	Connector							
9	LED soldering	0	0	2235	0	0		
	point							
10	Snoakor	<u> 9</u> 3	0	22700	0	0		

	Mobile Name			XXXX		
SI.	Position		Conce	ntration (All	in ppm)	
No.		Cd	Hg	Pb	Br	Cr
1	Back Cover	0	0	0	0	20
2	Key Pad	0	0	0	0	35.8
3	SIM 1	0	0	0	1230	0
4	SIM 2	48	0	0	2751	0
5	Memory Card Slot	0	0	36	2023.4	0
6	PCB	54	0	155	3496	0
7	Chip Component	70	0	0	0	0
8	Battery Connector	0	0	69.3	2249	188
9	LED soldering point	0	0	0	3138	0
10	Speaker soldering point	0	0	97	0	0
11	MIC soldering point	0	0	0	2764	0

	Mobile Name			XXXX		
SI. No.	Position		Concer	ntration (All	in ppm)	
NO.		Cd	Hg	Pb	Br	Cr
1	Back Cover	0	0	0	516.1	31.9
2	Key Pad	0	0	0	0	20.9
3	SIM 1	30	0	17.6	760.7	0
4	SIM 2	87	0	43.9	3524	0
5	Memory Card Slot	136	0	425	0	590
6	PCB	0	0	210	2587	1340
7	Chip Component	0	0	73	3688	0
8	Battery Connector	0	0	19.4	762	0
9	LED soldering point	0	0	3753	0	0
10	Speaker soldering point	0	0	3440	3446	0
11	MIC soldering point	0	0	1902	0	0

	Mobile Name			XXXX		
SI. No.	Position		Conce	ntration (All	in ppm)	
		Cd	Hg	Pb	Br	Cr
1	Back Cover	0	0	5.6	309.8	0
2	Key Pad	0	0	0	0	41.1
3	SIM 1	0	0	7137	2187.4	0
4	SIM 2	0	0	4180	3595	0
5	Memory Card Slot	0	0	77.5	3686	0
6	PCB	0	0	78	0	0
7	Chip Component	44.6	0	1933	2939	0
8	Battery Connector	0	0	377	0	0
9	soldering point	61	0	28110	0	0
10	Speaker soldering point	0	0	829	2405	0
11	MIC soldering point	0	0	2027	3560	0

	Mobile Name			XXXX				
SI. No.	Position		Concentration (All in ppm)					
		Cd	Hg	Pb	Br	Cr		
1	Back Cover	0	0	0	2.98	0		
2	Key Pad	0	0	0	0	0		
3	SIM 1	0	0	0	268.1	0		
4	SIM 2	0	0	0	170.4	0		
5	Memory Card Slot	66	0	0	3478	0		
6	PCB	0	0	51	0	0		
7	Chip Component	74	0	842	2196	0		
8	Battery Connector	76	0	155	0	173		
9	LED soldering point	0	0	0	2633	0		
10	Speaker soldering point	90	0	255	0	0		
11	MIC soldering point	-	-	-	-	-		

ENET.

	Mobile Name			XXXX					
SI. No.	Position		Concentration (All in ppm)						
		Cd	Hg	Pb	Br	Cr			
1	Back Cover	0	0	0	0	23.3			
2	Key Pad	0	0	0	3	0			
3	SIM 1	0	0	0	487	0			
4	SIM 2	-	-	-	-	-			
5	Memory Card Slot	-	-	-	-	-			
6	РСВ	0	0	0	421	0			
7	Chip Component	0	0	1716	568	0			
8	Battery Connector	153	0	517	203	0			
9	LED soldering point	-	-	-	-	-			
10	Speaker soldering point	-	-	-	-	-			
11	MIC soldering point	-	-	-	-	-			
100	and the								

Contract of the second

	Mobile Name			XXXX		
SI.	Position		Conce	ntration (All	in ppm)	
No.		Cd	Hg	Pb	Br	Cr
1	Back Cover	0	0	0	619.5	0
2	Key Pad	0	0	0	0	36.7
3	SIM 1	0	0	0	2629	0
4	SIM 2	0	0	0	0	0
5	Memory Card Slot	84	0	287	0	0
6	PCB	40	0	14.3	3372	0
7	Chip Component	0	0	1241	0	0
8	Battery Connector	0	0	0	1119.8	0
9	LED soldering point	0	0	122	0	0
10	Speaker soldering point	0	0	0	2070	222
11	MIC soldering point	0	0	44	0	0
100	al AZ					

Cant and the second

	Mobile Name	XXXX					
SI.	Position		Conce	entration (All	in ppm)		
No.		Cd	Hg	Pb	Br	Cr	
1	Back Cover	0	317	0	387	0	
2	Key Pad	0	0	0	0	27.6	
3	SIM 1	0	0	2968	1225	0	
4	SIM 2	0	0	4185	3323	532	
5	Memory Card Slot	0	0	1290	2761	0	
6	PCB	0	0	859	203.9	0	
7	Chip Component	0	0	7067	0	0	
8	Battery Connector	0	0	2863	1791	220	
9	LED soldering point	-	-	-	-	-	
10	Speaker soldering point	47	0	22311	2861	0	
11	MIC soldering point	55	0	18454	1503.9	0	
<u>, (57</u>	र मा मेट			-			

CIME T

	Mobile Name			XXXX		
~	D		Concer	tration (All	in ppm)	
SI. No.	Position	Cd	Hg	Pb	Br	Cr
1	Back Cover	0	0	0	2.51	0
2	Key Pad	0	0	0	0	27.9
3	SIM 1	0	0	0	3551	0
4	SIM 2	0	0	9.8	369.7	0
5	Memory Card Slot	0	0	59630	0	0
6	PCB	0	0	36240	0	0
7	Chip Component	0	0	4629	0	0
8	Battery Connector	48	0	12396	3600	0
9	LED soldering point	0	0	4679	3676	0
10	Speaker soldering point	0	0	33930	0	0
11	MIC soldering point	Centre j	for Materials	for Electronic	s Technology	(C-MET)

	Mobile Name			XXXX		
SI.	Position		Concer	ntration (All	in ppm)	
No.		Cd	Hg	Pb	Br	Cr
1	Back Cover	0	0	0	3.35	0
2	Key Pad	0	0	0	0	975
3	SIM 1	0	0	0	2281	0
4	SIM 2	0	0	208	3203	0
5	Memory Card Slot	0	0	59	1778.7	0
6	PCB	109	0	0	3662	1450
7	Chip Component	113	0	1390	798.4	0
8	Battery Connector	0	0	0	350	0
9	LED soldering point	0	0	34	3687	0
10	Speaker soldering point	0	0	0	96	0
11	MIC soldering point	0	0	48	0	0
10	MET	Centre	for Materials	for Electroni	cs Technology	(C-MET)

•Identify restricted substances in homogeneous materials, get the test reports, verify & document the same. – All state holders

 Look for alternate materials / process where ever restricted substances exceed the limits. – All researchers

•Strengthen the IS procedures in India through BIS – All researchers and analytical laboratories .

THEFUVANANTHAPURAM, TUERDAY, SEPTEMBER 3, 2002

New norms mandate manufacturers to keep hazardous substances below a specified limit

Union Minister of State for Information Technology and Communications Killi Kruparani at the Centre for Materials for Electronics Technology (C-MET) in Hyderabad on Saturday. – PHOTO: K. RAMESH BABU

Special Correspondent

HYDERABAD: Adding another feather to its cap, the city will house the first-of-its-kind laboratory to analyse and quantify the content of hazardous substances in electrical and electronic goods.

The facility Restriction of Hazardous Substances (RoHS) of the Centre for Materials for Electronics Technology (C-MET) has been set up in line with the stipulations and guidelines to be followed by manufacturers of e-waste.

Inaugurated by Union Minister of State for Information Technology and Communications Killi Kruparani on Saturday, the Restriction of Hazardous Substances (RoHS) had been designed to meet international standards on e-waste management which, in turn, would give fillip to hardware exports from the country.

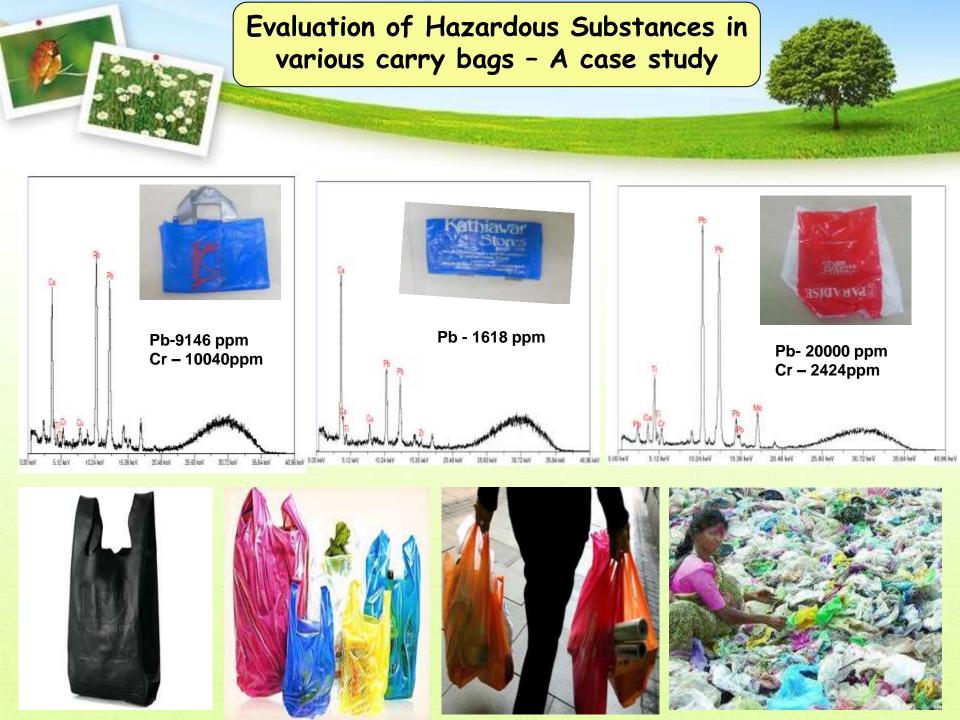
Only such facility

Dr. Kruparani said although there were over dozen laboratories operational across the country, the RoHS' certification would carry weight as it was the only such facility in the public sector. Exporters securing the C-MET certification would have better access to export markets than their counterparts without certification.

The industry was facing the challenge of reduction of hazardous substances as there was absence of provision for certification as also compulsory registration.

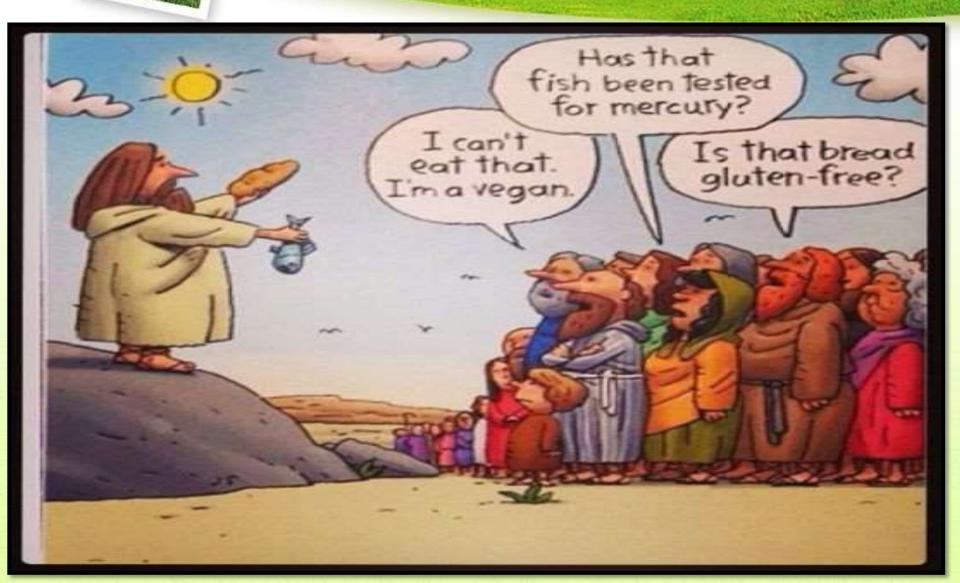
The facility would help Indian manufacturers gear up to the May 2014 deadline set by the Union Ministry of Environment and Forests to achieve substantial reduction in hazardous substances including lead, cadmium and mercury forming part of the printed circuit boards of electronic equipment.

The new norms, according to C-MET executive director D.P. Amalnerkar, would mandate manufacturers to keep hazardous substances below a specified limit failing which they would not be allowed to be marketed.


"It will, however, take some time for the industry to achieve compliance. But there has to be a beginning," he said.

Department of IT and Electronics group coordinator Debashish Datta, who explained about the hazardous substances, said no electronic product with more than 100 mg of Cadmium and 1,000 mg of other hazardous substances would be allowed in the country. Evaluaion of Pb levels in various gauge and coloured electrical cables using different characterization techniques -A case study

Pb concentration in various gauge and coloured electrical cables using different characterization techniques


Yellow (1sq mm) Red (2Sqmm) 1875 1649 84 2015 92 1808 92 1639 Red (2Sqmm) 10419 9077 96 10484 75 1000 6575 Blue (2Sqmm) 1259 1240 93 1453 114 1479 83 1560 Blue (1Sqmm) 1090 912 89 1176 104 1058 84 1167 Black (2.5sqmm) 31005 23099 92 25270 90 15192	Sample	EDXRF (ppm)	ICP-OES (ppm) (Agilent)	% Recovery	AAS (ppm)	% Recovery	ICP-OES (ppm) (Thermo)	% Recovery	ICP-MS
Red (2Sqmm) 10419 9077 96 10484 75 6575 Blue (2Sqmm) 1259 1240 93 1453 114 1479 83 1560 Blue (1Sqmm) 1090 912 89 1176 104 1058 84 1167 Black (2.5sqmm) 31005 23099 92 25270 90 15192 Black (1sqmm) 985 1121 82 1338 107 1275 80 1075 Black (2.5 sqmm Black (2.5 sqmm) 985 1121 82 1338 107 1275 80 1075	Green (1sqmm)	1028	1123	94	1554	116	1264	105	1445
Blue (2Sqmm) 1259 1240 93 1453 114 1479 83 1560 Blue (1Sqmm) 1090 912 89 1176 104 1058 84 1167 Black (2.5sqmm) 31005 23099 92 25270 90 15192 Black (1sqmm) 985 1121 82 1338 107 1275 80 1075 Black (1sqmm) 985 1121 82 1338 107 1275 80 1075	Yellow (1sq mm)	1875	1649	84	2015	92	1808	92	1639
Blue (1Sqmm) 1090 912 89 1176 104 1058 84 1167 Black (2.5sqmm) 31005 23099 92 25270 90 15192 15192 Black (1sqmm) 985 1121 82 1338 107 1275 80 1075 Black (1sqmm) 985 5 1121 82 1338 107 1275 80 1075 Black (2.5 Sqmm 102 1338 107 1275 80 1075	Red (2Sqmm)	10419	9077	96	10484	75	In the second second	1	6575
Black (2.5sqmm) 31005 23099 92 25270 90 15192 Black (1sqmm) 985 1121 82 1338 107 1275 80 1075 Black (1sqmm) 985 1121 82 1338 107 1275 80 1075 Black 2.5 Sqmm Red 2.0 Sqmm	Blue (2Sqmm)	1259	1240	93	1453	114	1479	83	1560
Black (1sqmm) 985 1121 82 1338 107 1275 80 1075 Black 2.5 Sqmm	Blue (1Sqmm)	1090	912	89	1176	104	1058	84	1167
Black 2.5 Sqmm	Black (2.5sqmm)	31005	23099	92	25270	90	in the state	Sale and	15192
Black 2.5 Sqmm	Black (1sqmm)	985	1121	82	1338	107	1275	80	1075
	Black (1sqmm)	Рь ВІ 2.5	ack jo	82	1338		Red	aq	10

Thank you very much for your kind attention

सीमेट

1/57

